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ABSTRACT
Unlike a character measured at a finite set of landmark points, function-valued traits are those that

change as a function of some independent and continuous variable. These traits, also called infinite-
dimensional characters, can be described as the character process and include a number of biologically,
economically, or biomedically important features, such as growth trajectories, allometric scalings, and
norms of reaction. Here we present a new statistical infrastructure for mapping quantitative trait loci
(QTL) underlying the character process. This strategy, termed functional mapping, integrates mathematical
relationships of different traits or variables within the genetic mapping framework. Logistic mapping
proposed in this article can be viewed as an example of functional mapping. Logistic mapping is based
on a universal biological law that for each and every living organism growth over time follows an exponen-
tial growth curve (e.g., logistic or S-shaped). A maximum-likelihood approach based on a logistic-mixture
model, implemented with the EM algorithm, is developed to provide the estimates of QTL positions, QTL
effects, and other model parameters responsible for growth trajectories. Logistic mapping displays a
tremendous potential to increase the power of QTL detection, the precision of parameter estimation,
and the resolution of QTL localization due to the small number of parameters to be estimated, the
pleiotropic effect of a QTL on growth, and/or residual correlations of growth at different ages. More
importantly, logistic mapping allows for testing numerous biologically important hypotheses concerning
the genetic basis of quantitative variation, thus gaining an insight into the critical role of development in
shaping plant and animal evolution and domestication. The power of logistic mapping is demonstrated
by an example of a forest tree, in which one QTL affecting stem growth processes is detected on a linkage
group using our method, whereas it cannot be detected using current methods. The advantages of
functional mapping are also discussed.

THE theoretical principle for analyzing quantitative simultaneously to map multiple QTL of epistatic interac-
trait loci (QTL) dates back to Sax (1923), who first tions throughout a linkage map. Currently, an upsurge

associated pattern and pigment markers with seed size of QTL mapping methodologies has been developed to
in beans. However, statistical methodologies for map- consider various situations regarding different marker
ping QTL on a high-density linkage map of molecular types (dominant or codominant), different marker
markers had not been well established until Lander spaces (sparse or dense), different experimental designs
and Botstein’s (1989) pioneering work. These au- (F2/backcross or full-sib family), or different mapping
thors employed an expectation-maximization (EM)- populations (autogamous or allogamous). The statisti-
implemented maximum-likelihood approach, pro- cal methods used for QTL mapping in the literature
posed by Dempster et al. (1977), to map QTL on a include regression analyses (Haley and Knott 1992;
particular chromosomal interval bracketed by two Xu 1995), maximum likelihood (Lander and Botstein
flanking markers. This so-called interval mapping 1989; Zeng 1994; Kao et al. 1999), and the Bayesian
method was later improved by including markers from approach (Satagopan et al. 1996; Sillanpaa and Arjas
other intervals as covariates to control the overall ge- 1999; Xu and Yi 2000). Many of these mapping methods
netic background (Jansen and Stam 1994; Zeng 1994). have been instrumental in the identification of QTL
The improved method, called composite interval map- responsible for variation in various complex traits im-
ping by Zeng (1994), displays increased power in QTL portant to agriculture, forestry, biomedicine, or biologi-
detection because of reduced residual variance. Kao cal research (Tanksley 1993; Wu et al. 2000; Mackay
et al. (1999) proposed using multiple marker intervals 2001; Mauricio 2001).

It should be noted, however, that many quantitative
traits, such as body size and body shape, are inherently
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vironmental stimulus. These traits, which can be ex- mapping. A maximum-likelihood-based method, imple-
mented with the EM algorithm, is used to estimate QTLpressed as a function (or stochastic process) of some

independent and continuous variable, were thought of locations and effects on various biological processes.
The newly developed method is applied in an exampleas infinite-dimensional characters by Kirkpatrick and

Heckman (1989) or function-valued traits by Pletcher to map the growth of a forest tree. Compared with
current mapping methods, our method incorporatingand Geyer (1999). The genetic determination of the

character process has long intrigued students in differ- growth trajectories tends to be more powerful and more
precise in QTL detection and also has greater potentialent disciplines of biology, genetics, and breeding (e.g.,

Cheverud et al. 1983; Atchley 1984; Wu et al. 1992; to increase mapping power, precision, and resolution by
reducing residual variance and the number of unknownAtchley and Zhu 1997; Rice 1997). A simple approach

for mapping infinite-dimensional characters is to associ- parameters to be estimated. In practice, our method
is economically more feasible than previous methodsate markers with phenotypes separately for different

ages, traits, or environments and compare the differ- because it needs a smaller sample size to obtain ade-
quate power for QTL detection as a result of the use ofences of QTL expression across ages, traits, or environ-

ments (Cheverud et al. 1996; Nuzhdin et al. 1997; Ver- multiple measurements for each individual. It can be
anticipated that the method proposed in this article willhaegen et al. 1997; Emebiri et al. 1998; Wu et al. 1999).

However, these separate analyses cannot provide effec- have great implications for the design of an efficient
early selection program and the interface of genetics,tive estimates of genetic control over infinite-dimen-

sional characters, because they fail to capture the infor- development, and evolution.
mation about the covariances of different traits or the
same trait measured at different ages or environments.

MODELING THE CHARACTER PROCESS
Although multitrait mapping approaches can take into
account simultaneously different traits or the same trait Many biological processes in real life are expected to

arise as curves, such as growth curves, allometric scal-measured at different ages or environments (Jiang and
Zeng 1995; Korol et al. 1995; Ronin et al. 1995; Eaves ings, hormone profiles, and norms of reaction. A growth

curve or trajectory represents an individual as a functionet al. 1996; Knott and Haley 2000), their applications
are actually limited to bivariate, or at most trivariate, that relates the age of an individual to some measure

of its size. Since there are an infinite number of ages,analyses. As the number of traits increases these
multitrait analysis approaches will have a reduced ability growth trajectories can be thought of as function-valued

traits (Pletcher and Geyer 1999; Jaffrezic and Pletcherto produce precise estimates of genetic parameters in
quantitative genetic studies (Shaw 1987). 2000) or infinite-dimensional characters (Kirkpatrick

and Heckman 1989). Other examples of function-val-To circumvent the difficulty in manipulating a large
number of correlated traits, new attempts were made ued traits include the continuous change of a morpho-

logical or physiological variable with body size (allometricby Mangin et al. (1998) and Korol et al. (2001), who
transformed the initial trait space into a space of a lower scaling, Niklas 1994; West et al. 1997, 1999) and respon-

sive phenotypes of a given genotype to a changing envi-dimension on the basis of principal component analysis
or interval-specific calculation of eigenvalues and eigen- ronment (reaction norm, Via et al. 1995). The common

property of these function-valued traits is that they canvectors of the residual covariance matrix. These new
attempts have, to some extent, made the genetic map- be described as a function (or stochastic process) of

some independent and continuous variable consistingping of a large number of traits more tractable, but
they still treat infinite-dimensional characters as discrete of an infinite number of points, such as age, tempera-

ture, light intensity, or biological size.traits or eigenvalues and do not place the physiological
mechanisms predisposing for the phenotypic variation The model for QTL mapping we developed relies on

concepts from functional analysis and stochastic pro-of infinite-dimensional characters in a mapping frame-
work. In real life, an infinite-dimensional character of- cesses. Throughout, we use growth trajectories as a con-

crete example to illustrate the ideas, but allometric scal-ten changes its phenotype through particular physiolog-
ical regulations or developmental signals in the same ings, hormone profiles, and reaction norms can be

treated in the same framework with appropriate modi-way that an organism tends to maximize its metabolic
capacity and internal efficiency as a consequence of natu- fications.

Growth trajectory: It is well known that there areral selection. Therefore, the incorporation of the under-
pinning physiological or developmental mechanisms of biological laws underlying growth trajectories (Gould

1977; Alberch et al. 1979). A growth law can be visual-trait variation into a QTL-mapping strategy may likely
produce more accurate results in terms of biological ized as the “force field” propelling a point through a

phenotype space, tracing out the ontogenetic path. Ifreality.
The objective of this study is to propose a general the size of an organism is denoted by y, its ontogenetic

trajectory y(t) can be generated through the differentialtheoretical framework for embedding biological mecha-
nisms and processes in the statistical analysis of QTL dy/dt, which models the growth rate. Many differential
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functions have been established to describe the growth gether with the initial growth and asymptotic growth,
determines exclusively the difference of two growthtrajectory. Basically, they are sorted into three catego-

ries: (1) exponential, (2) saturating, and (3) sigmoidal curves. Any two curves will not be distinguishable if they
have the same values for these three variables.(von Bertalanffy 1957; Niklas 1994). Each of these

growth models has a common feature that the develop-
ment of ontogenetic trajectory is regulated by a set of

STATISTICAL MODELS“control parameters” such as onset age of growth, offset
signal for growth, growth rate during the period of Genetic design: The purpose of this article is to intro-
growth, and initial size at the commencement of the duce a novel idea to QTL mapping. Hence, we suppose
growth period. Also, each of these growth models exhib- a simplest backcross design derived from two contrasted
its an initial phase of exponential growth due simply homozygous inbred lines. Other more complex designs,
to the geometrically multiplying population of newly such as an F2 or full-sib family, can also be used. In a
differentiated cells. This initial growth phase has the backcross population, there are two groups of genotypes
property that small perturbations in growth rate or onset at a locus, in which a marker-based genetic linkage map
age are amplified enormously during ontogeny. Thus, is constructed, aimed at the identification of QTL affect-
it is easy to find examples of how a small “mutation” in ing an age-dependent trait, such as body size or body
a growth parameter causes a series of developmental weight. In practice, the data are observed only at a finite
alterations that produce a phenotype qualitatively differ- set of times, 1, . . . , m, rather than a continuum, so we
ent from the normal one. have only a finite set of data on each individual i, which

In this article, we further limit our analysis to sigmoi- can be considered as a multivariate trait vector, yi(1),
dal, or logistic, function (Pearl 1925). The logistic . . . , yi(m). This finite set of data can be modeled by a
curve is regarded as among the most important ones to growth curve. Assume that a pleiotropic QTL of allele
capture the age-specific change in growth (Niklas 1994; Q 1 and Q 2 affecting growth curves or trajectories is segre-
West et al. 2001). The logistic growth curve as a biologi-

gating in the backcross population. This QTL is brack-
cal law can be mathematically described by

eted by two flanking markers � and � � 1, each with
two genotypes M�m�, m�m�, and M��1m��1, m��1m��1,g(t) �

a
1 � be�rt

, (1) respectively. For a particular genotype j ( j � 1 for Q 1Q 2

or 2 for Q 2Q 2) of this QTL, the parameters describing
where a is the asymptotic or limit value of g when t → its logistic curve are denoted by aj, bj, and rj. The compari-
∞, a/(1 � b) is the initial value of g when t � 0, and r sons of these parameters between two different geno-
is the relative rate of growth (von Bertalanffy 1957). types can determine whether and how this putative QTL
The logistic growth curve consists of two phases, an affects growth trajectories.
exponential and an asymptotic. The overall form of Suppose that there are a total of N progeny in the
the curve is determined by different combinations of backcross measured at each of m times. The trait pheno-
parameters a, b, and r. If different genotypes at a putative type of progeny i measured at time t due to the QTL
QTL have different combinations of these parameters, located on an interval flanked by markers � and � � 1
this implies that this QTL plays a role in governing the can be expressed by a linear statistical model (Kirkpat-
difference of growth trajectories. rick and Heckman 1989; Lander and Botstein 1989;

The logistic growth curve described in Equation 2 can Pletcher and Geyer 1999),
be used to determine the coordinates of a biologically
important point in the entire growth trajectory—the in- yi(t) � �i1g1(t) � (1 � �i1)g 2(t) � ei(t), (3)
flection point—where the exponential phase ends and

where �ij is an indicator variable for the possible geno-the asymptotic phase begins (Niklas 1994). The time
types of the QTL for progeny i and defined as 1 if aat the inflection point corresponds to the time point at
particular QTL genotype is indicated and 0 otherwise;which a maximum growth rate occurs. The time (t I)
g j(t) is the genotypic value of the QTL for the trait atand growth [g(t I)] at the inflection point for a QTL
time t ; and ei(t) is the residual effect of progeny i, includ-genotype can be derived as
ing the aggregate effect of polygenes and error effect,
and distributed as N(0, �2

e(t)). The probability witht I �
log b

r which �ij takes 1 or 0 depends on the two-locus genotype
of the flanking markers � and � � 1 and the position

g(t I) �
a
2

. (2) of the QTL on the marker interval. The probability of
a QTL genotype (Q 1Q 2 or Q 2Q 2) conditional upon the
four genotypes of the flanking markers (M�m�M��1m��1,The difference in the coordinates between different
M�m�m��1m��1, m�m�M��1m��1, and m�m�m��1m��1)genotypes provides important information about the
for progeny i in the backcross population was expressedgenetics and evolution of growth trajectories (Niklas

1994). Moreover, the time at the inflection point, to- as
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pij � Prob(�ij � j |�, � � 1, �), j � 1 or 2,

where � is the ratio of the recombination fractions be- �

���

log L(�) � �
N

i�1
�
2

j�1

pij
�

���

fj(yi)

R2
j�1pij fj(yi)tween marker � and the QTL to the recombination

fraction between the two markers.
� �

N

i�1
�
2

j�1

pij fj(yi)

R2
j�1pij fj(yi)

�

���

log fj(yi)Statistical methods: The phenotypes of the trait at all
time points 1, . . . , m for each QTL genotype group
follow a multivariate normal density,

� �
N

i�1
�
2

j�1

Pij
�

���

log fj(yi),

fj(y) �
1

(2	)m/2|R|1/2
exp[�(y � g j)T R�1(y � g j)/2], where we define

where gj is the vector of the expected genotypic values Pij �
pij fj(yi)

Rk
j�1pij fj(yi)

, (8)
of the trait for QTL genotype j measured for t times
and R is the residual variance-covariance matrix of the which could be thought of as a posterior probability
phenotypes measured at different ages. Indeed, gj can that progeny i have QTL genotype j. We then implement
be modeled by the logistic curve of Equation 2 as the EM algorithm with the expanded parameter set {�,

P}, where P � {Pij, j � 1, . . . , k ; i � 1, . . . , N }. Conditional
g j � [g j(t)]1
m � � a j

1 � bj e�rj t�
1
m

, (4) on P, we solve for

�

���

log L(�) � 0 (9)and R can be assumed identical among different geno-
types and modeled using AR(1) repeated measure-
ment errors (Davidian and Giltinan 1995; Verbeke to get our estimates of � (the M step; Equation 9).
and Molenberghs 2000) as The estimates are then used to update P (the E step;

Equation 8), and the process is repeated until conver-
gence. The values at convergence are the MLEs of �.
The iterative expressions of estimating � from the previ-R � �2

e







1 � . . . �m�1

� 1 . . . �m�2

. . . . . . . . . . . .
�m�1 �m�2 . . . 1







. (5)
ous step are given in appendix a. The standard errors
of the MLEs are estimated using the inverse of the Fisher
information matrix.For simplicity, the matrix R of Equation 5 assumes vari-

In practical computations, the QTL position parame-ance stationarity, i.e., there is the same residual variance
ter � can be viewed as a fixed parameter because a(�2) for the trait at each time, and covariance stationar-
putative QTL can be searched at every 1 or 2 cM on aity; i.e., the covariance between different measurements
map interval bracketed by two markers throughout thedecreases proportionally (in �) with increased time in-
entire linkage map. The amount of support for a QTL atterval (see also Pletcher and Geyer 1999). These two
a particular map position is often displayed graphicallyassumptions, although providing a reasonable approxi-
through the use of likelihood maps or profiles, whichmation in some situations, can be readily relaxed. In
plot the likelihood-ratio test statistic as a function ofthe discussion, we propose a few different approaches
map position of the putative QTL.to the relaxation of these two assumptions.

The likelihood of the backcross progeny with m-dimen-
sional measurements can be represented by a multivari- HYPOTHESIS TESTS
ate mixture model

After the MLEs of the parameters of interest are ob-
tained, a number of biologically meaningful hypothesesL(�) � �

N

i�1
��

2

j�1

pij fj(yi)� , (6)
can be tested on the basis of the logistic-based genetic
model. First, the hypothesis about the existence of awhere the vector � � (aj, bj, rj, �, �, �2)T contains un-
QTL affecting an overall growth curve can be formu-known parameters to be estimated for the QTL effect,
lated asQTL position, and residual (co)variances. The maxi-

mum-likelihood estimates (MLEs) of the unknown pa- H0: a1 � a 2, b 1 � b 2, r1 � r2

rameters for a pleiotropic QTL can be computed by
H1: at least one of the equalities above does not hold,implementing the EM algorithm (Dempster et al. 1977;

(10)Lander and Botstein 1989; Zeng 1994). The log-likeli-
hood is given by where H0 corresponds to the reduced model, in which

the data can be fit by a single logistic curve, and H1
log L(�) � �

N

i�1

log ��
2

j�1

pij fj(yi)� , (7) corresponds to the full model, in which there exist two
different logistic curves to fit the data.

Second, the hypothesis test can be performed on thewith derivatives
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time at which the detected QTL starts to exert or ceases the way in which QTL trigger an effect on growth and
development.an effect on growth trajectories, by comparing the differ-

ence of the expected means between different geno- The test statistics for testing the hypotheses (10–15)
are calculated as the log-likelihood ratio (LR) of thetypes at various time points. At a given time t*, the

hypothesis is full over reduced model:

H0: g1(t*) � g2(t*)
LR � �2 log�L(�̃)

L(�̂)� ,
H1: g1(t*) � g2(t*). (11)

where �̃ and �̂ denote the ML estimates of the un-If H0 is rejected, this means that the QTL has a signifi-
known parameters under H0 and H1, respectively. Butcant effect on variation in growth at time t*. Testing the
the determination of the distribution of the LR is ahypotheses (11) is equivalent to testing the difference of
difficult statistical issue. For a two-normal mixturethe model with no restriction and the model with the
model, like ours in this study, Loisel et al. (1994) provedrestriction:
that the limiting distribution of LR under H0 for (10)
is a 50:50 mixture of �2

1 and �2
2 if � is unknown. The testa1

1 � b 1e�r1t *
�

a 2

1 � b 2e�r2t *
.

statistics for the other hypotheses (12–15) can be viewed
as being asymptotically �2 distributed with 1 d.f.

Because t* is given, one of the six logistic parameters
can be expressed as a function of the other five and,
thus, there is one fewer parameter to be estimated for EXAMPLE
the model with the above restriction (the reduced

The Populus map: We use an example of a forest treemodel) than the model with no restriction (the full
to demonstrate the power of our statistical model formodel). By scanning time points from 1 to m, one can
mapping QTL affecting growth trajectories. The studyfind the time point at which the QTL starts or ceases
material used was derived from the triple hybridizationto exert an effect on growth.
of Populus (poplar). A Populus deltoides clone (desig-Third, the genotypic differences in time (t I) and
nated I-69) was used as a female parent to mate withgrowth [g(t I)] at the inflection point of maximum
an interspecific P. deltoides 
 P. nigra clone (designatedgrowth rate (Equation 2) can be tested. The test for the
I-45) as a male parent (Wu et al. 1992). The hybridsgenotypic difference is based on the restriction
between P. deltoides and P. nigra are called Euramerica
poplar (P. euramericana). Both P. deltoides I-69 and P.log b 1

r1

�
log b 2

r2

(12) euramericana I-45 were selected at the Research Institute
for Poplars in Italy in the 1950s and were introduced

for t I, and to China in 1972. In the spring of 1988, a total of 450
1-year-old rooted three-way hybrid seedlings werea1

2
�

a 2

2
(13) planted at a spacing of 4 
 5 m at a forest farm near

Xuchou City, Jiangsu Province, China. The total stem
heights and diameters measured at the end of each offor g(t I).
11 growing seasons are used in this example.Fourth, when there is no double “crossover” between

A genetic linkage map has been constructed using 90the growth curves of the two QTL genotypes, the effect
genotypes randomly selected from the 450 hybrids withof QTL 
 age interaction on the overall growth curve
random amplified polymorphic DNAs (RAPDs), ampli-can be tested by comparing the genotypic differences
fied fragment length polymorphisms (AFLPs), and in-at time t � 0 and t � ∞, which is expressed by the
tersimple sequence repeats (ISSRs; Yin et al. 2002). Thisrestriction
map comprises the 19 largest linkage groups for each
parental map, which represent roughly 19 pairs of chro-a1

1 � b 1

�
a 2

1 � b 2

� a1 � a 2 . (14)
mosomes. We chose linkage group 10 from the P. del-
toides parent map to detect QTL affecting diameter

Similarly, the effect of QTL 
 age interaction on the growth using our newly developed method.
growth at any two different time points t1 and t2 can be Logistic curves: By plotting total growth against year,
tested with the restriction it is observed that each of the 90 mapped genotypes

follows the S-shaped (logistic) growth curve. Figure 1a1

1 � b 1e �r1t1
�

a 2

1 � b 2e �r2t1
�

a1

1 � b 1e� r1t 2
�

a 2

1 � b 2e� r2t 2
. illustrates S-shaped growth curves for individual stem

diameters over 11 years. A least-squares approach was(15)
used to fit diameter growth with the logistic curve (Equa-
tion 1) for each genotype. On the basis of statisticalTesting QTL 
 age interactions on the basis of Equa-

tions 14 and 15 can be helpful to our understanding of tests, all genotypes can be well fit by a logistic curve
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Figure 1.—Plots of stem diameter growth vs. ages for each of the 90 genotypes used to construct linkage maps in poplar hybrids
(Yin et al. 2002). The growth of these genotypes can be well fit by a particular logistic curve. The x- and y-axes of the plots denote
age (in years) and stem diameter (in centimeters).

(r 2  0.95). Also, different curve shapes of these geno- the empirical critical threshold at the significance level
P � 0.01.types imply possible genetic control over growth trajec-

tories. The statistical model built upon the logistic To compare the power of our method with previous
methods, the same material is subjected to interval map-growth curve model is used to map QTL responsible

for growth trajectories in diameters. ping (Lander and Botstein 1989) and composite inter-
val mapping (Zeng 1994) on the basis of the most differ-QTL detection: Using our logistic mapping model,

one QTL is detected on linkage group 10 for the growth entiated phenotypes measured at year 11 (Figure 1).
Neither of these two mapping methods can declare thetrajectory of stem diameter in the interspecific hybrids

of poplar (Figure 2). The critical value for claiming the existence of a significant QTL given their lower LR
values. Figure 2 illustrates the result from interval map-existence of QTL can be determined on the basis of the

Bonferroni argument for the sparse-map case (Lander ping for diameters. No LR value from interval mapping
is larger than the threshold (7.68) obtained from per-and Botstein 1989) or by permutation tests proposed

by Doerge and Churchill (1996). In this example, mutation tests at the significance level P � 0.05.
Similar conclusions about the difference of QTL de-the chromosome-wide empirical estimate of the critical

value is obtained from 1000 permutation tests. It is tection between our method and current methods are
obtained for many other linkage groups (results notfound that the critical values for declaring the existence

of a QTL on the linkage group under consideration are shown). These suggest that our method incorporating
logistic growth curves has greater power to detect a34.69 and 45.56 at the significance levels P � 0.05 and

0.01, respectively. The profile of the log-likelihood ratios significant QTL than the current methods.
The dynamic pattern of QTL expression: Our methodof the full vs. reduced model across the length of linkage

group 10 has a clear peak at �13 cM from marker CA/ has an additional advantage; i.e., it can detect the dy-
namic change of QTL expression over time. The growthCCC-640R. The LR value at this peak is 51.0, well beyond
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Figure 2.—The profile of
the log-likelihood ratios be-
tween the full and reduced (no
QTL) model for diameter
growth trajectories across link-
age group 10 in the Populus del-
toides parent map. The genomic
positions corresponding to the
peak of the curve are the MLEs
of the QTL localization. The
solid and broken curves/lines
indicate the results from our
method and interval mapping,
respectively. The threshold val-
ues for both methods are given
as horizontal lines. The vertical
dotted lines indicate the posi-
tions of markers on the linkage
group (Yin et al. 2002), whose
names are given beneath.

curves of diameter are drawn using the estimates of the genetic basis of quantitative traits can be better
unraveled (Mackay 2001) and, ultimately, genetic im-logistic parameters for two genotypes at the QTL de-

tected on linkage group 10 (Figure 3). On the basis of provement for these complex traits can be made more
efficient (Tanksley 1993; Wu et al. 2000). Analyses andthe hypothesis test (11), this QTL is detected to be

inactive until trees grew to �6 years in the field. And interpretations of genomic data, however, are strongly
dependent upon the study material, data structure, ge-its effect on diameter growth increased with age. At 11

years old, genotype Q 1Q 2 exhibited diameter growth netic model, and statistical method used. As a result,
considerable attention has been paid to the develop-4.5 cm more than its alternative Q 2Q 2. This difference

appears to increase after age 11 years, as predicted from ment of powerful experimental designs and analytical
methodologies that can increase the power, precision,the logistic curves estimated (Figure 3). Apparently, this

QTL interacts significantly with age to affect stem diame- and resolution of QTL mapping. Currently, there have
been many strategies proposed to increase QTL map-ter growth.

If two growth curves predicted by a QTL have differ- ping. These include: (1) selecting two highly differenti-
ated inbred lines to make a segregating generation, suchent ages and/or growth at the inflection point, this

indicates that the inflection point is under genetic deter- as the F2 or backcross; (2) increasing the sample size of
a mapping population by genotyping more progeny; (3)mination. It is found that the QTL detected on linkage

group 10 exerts strong control over the inflection point saturating the map density using informative markers,
especially in genomic regions carrying QTL; (4) using(Figure 3). The genetic control of the inflection point

suggests that the growth trajectory can be genetically composite interval mapping and multiple interval map-
ping (Jansen and Stam 1994; Zeng 1994; Kao et al.modified to increase a tree’s capacity to effectively ac-

quire spatial resources. 1999); and (5) developing more powerful computa-
tional technologies, such as the Bayesian approach im-
plemented with the Markov chain Monte Carlo (MCMC)

DISCUSSION
algorithm (Satagopan et al. 1996; Xu and Yi 2000). In
this article, we propose that a simultaneous analysis ofBeyond the traditional models and tools used for

quantitative genetic studies, current genome technolo- repeated measurements for a quantitative trait based
on biological mechanisms can be used as an alternativegies permit us to dissect quantitative traits into individ-

ual locus components (QTL). Through this dissection strategy to enhance mapping power and precision.
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approaches, our approach estimates a highly reduced
number of model parameters, which can make an ini-
tially high-dimensional mapping model more tractable
and the estimates of QTL parameters more precise.

Composite interval mapping can improve mapping
precision to some extent when multiple QTL are located
on the same linkage group, but their use frequently
depends upon many other factors, e.g., marker spacing,
the choice of markers as cofactors, and genotyped sam-
ple size (Broman 2001). Multiple interval mapping, pro-
posed by Zeng and co-workers, can simultaneously
model multiple marker intervals so that multiple QTL
and their epistatic interactions can be estimated (Kao
et al. 1999). Yet, a serious difficulty may be encountered
when multiple interval mapping is extended to simulta-
neously map multiple quantitative traits or repeated
measurements at different ages, because a high number

Figure 3.—Two growth curves each presenting two groups of QTL effects should be modeled in these cases. Our
of genotypes at the QTL detected on linkage group 10 in the logistic-mixture model, when built upon composite in-
Populus deltoides parent map. The times at the inflection point

terval mapping or multiple interval mapping, can make(tI1 and tI2) are indicated for the two QTL genotypes Q 1Q 2 and
these two approaches more tractable by reducing theQ 2Q 2, respectively. The differentiation pattern of growth curves

beyond the maximum observed age (11), affected by the QTL, number of model parameters to be estimated. In fact,
is represented by extended broken curves. evidence for more than one QTL observed on some

linkage groups from our approach in the poplar exam-
ple (results not shown) prompts us to build the logistic

It is well demonstrated that increased sample sizes and mixture model upon composite interval mapping or
marker densities can almost always improve precision in multiple interval mapping and provide better resolution
QTL mapping, but they could be economically expen- of multiple linked QTL for growth processes.
sive in practice. Our mapping approach for repeated We have used the method of maximum likelihood to
measurements based on growth curves can extract maxi- estimate the unknown parameters with their MLEs. The
mum information about QTL effects and positions con- MLEs are attractive in terms of their properties of invari-
tained in an arbitrary segregating family and, thus, con- ance, consistency, and asymptotic efficiency. Our ap-
fers an advantage for QTL detection in the situation proach, built upon the traditional maximum-likelihood
where a limited size of genotyped samples or a limited method, is readily accessible to the general genetics
level of marker density is used. In an example with a community. Using prior information on parameters,
small sample size (N � 90) using forest tree data, our however, we can incorporate the logistic-mixture model
logistic mixture model offers improved power to detect in the Bayesian paradigm (Satagopan et al. 1996; Xu
a number of QTL underlying stem growth, in contrast and Yi 2000). By specifying the prior density of parame-
to traditional approaches based on a single trait, which ters, MCMC can be used to evaluate the posterior density
do not detect any QTL. Such differences are not surpris- and provide posterior distributions of QTL effects and
ing because a single-trait analysis approach typically can- positions (Robert and Casella 1999).
not detect the QTL of small effect (Beavis et al. 1994). Although the results of our approach are quantified

The increased detection power of our approach re- by differences in the parameters controlling the overall
sults from the simultaneous use of multiple measure- shapes of different logistic curves, they can also be inter-
ments that are correlated due to either the effect of preted as regular genetic parameters, i.e., the additive
pleiotropic QTL or residual covariances or both. This, or dominant effect of a QTL on growth at an arbitrary
in principle, is similar to the result from multitrait map- time point and the percentage of the total phenotypic
ping, as shown in Jiang and Zeng (1995), Ronin et al. variance explained by this QTL. According to classical
(1995), Eaves et al. (1996), Mangin et al. (1998), Knott

quantitative genetics theory, the expected genetic values
and Haley (2000), and Korol et al. (1995, 2001). How-

for QTL genotypes Q 1Q 2 and Q 2Q 2 at time t can be ex-
ever, beyond these multitrait mapping approaches, our

pressed, respectively, asgrowth-based approach treats phenotypic values as a
function of age, thus having the ability to analyze a

g1(t) � �(t) �
1
2

�(t)quantitative trait measured at an unlimited number of
time points by modeling the full, continuous growth
trajectory. Moreover, instead of estimating a large g 2(t) � �(t) �

1
2

�(t),
number of parameters, as needed in the traditional
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where �(t) is the additive genetic effect of the QTL of the ubiquitous phenomena in biology, holding for
every cell, organ, tissue, organism, or population, in adetected on growth at time t, which can be solved from

the above equations. The additive genetic variance of range from microbes (10�13 g) to blue whales (108 g),
no matter what species it is derived from (West et al.growth at time t contributed by this QTL is expressed

as 2001). The pattern of the logistic growth curve can be
different among species, populations, and genotypes
(Hof et al. 1999; Robert et al. 1999). However, it is also�2

g(t) �
1
4

�2(t).
worthwhile to incorporate other biologically meaning-
ful models (reviewed in Niklas 1994) into our analysis,Thus, the percentage of the total phenotypic variance
as long as they fit well a dataset for particular species,accounted for by this QTL is
environments, or developmental stages.

To incorporate a general biological process, we
R(t) �

�2
g(t)

�2
g(t) � �2

e(t)
. should first have a descriptive mathematical function

that is expressed as
These parameters described above can also be used to
investigate the contribution of a QTL to growth at a
point. However, it is important in practice to know how y �






f(x) for allometric laws
g(t) for growth models
h(z) for reaction norms

, (16)
much a QTL contributes to the differentiation of overall
growth curves or the differentiation of growth at a time

where y is the biological trait of interest, x is the bodyinterval. This can be formulated by calculating the inte-
size, t is the age, and z is an environmental variable likegral of the difference of two logistic curves on a particu-
temperature, nutrition, or light intensity. The forms oflar time interval. In appendix b, the formula for calculat-
mathematical functions, f(x), g(t), and h(z), which caning the integral of a logistic curve is given. With the
be linear or nonlinear, are generally different, de-genetic contributions of a QTL to growth, our approach
pending on specific questions of interest. Generally, thecan increase the power of discriminating various impor-
establishment of appropriate mathematical functions istant hypotheses that concern the genetic architecture
based on the goodness of fit to observational dataof developmental features (Vaughn et al. 1999). Using
(Niklas 1994). Alternatively, these mathematical func-the logistic mixture model, the pattern of gene expres-
tions are derived from an optimality perspective. Forsion for each different QTL can be explicitly described,
example, West et al. (1997, 1999) proposed a fractal-thus leading to insights on fundamentally important
like network system for the absorption and internal dis-biological questions; e.g., when and how does a QTL
tribution of metabolites to explain quarter-power scal-affect the phenotype of a quantitative trait during the

entire growth trajectory? How does a QTL interact with ing laws pervasive in the living world. In addition, West
et al. (2001) explained why the growth of an organismage to affect the growth and development of an organ-

ism? These questions will also have implications for ap- follows a sigmoid curve based on fundamental princi-
ples for the allocation of metabolic energy betweenplied breeding programs. If a tree breeder intends to

select superior genotypes with high fiber yield at harvest- maintenance of existing tissue and the production of
new biomass.ing ages (say 15 years) on the basis of their early perfor-

mance, a marker-assisted selection strategy incorporat- The method proposed in this study can be extended
to other situations, such as partially informative markersing a QTL like one detected on linkage group 10 from

our method (Figure 3) can be expected to increase or dominant markers, to deal with linked QTL of epista-
sis or to combine it with selective genotyping. In thisthe efficiency of early selection because such a QTL

predisposes for productive final fiber yield at age 15 study, it is assumed that residual variances and covari-
ances among different ages are stationary. This assump-years. With no information about the developmental

change of QTL expression, however, this breeder is tion simplifies the mathematical manipulation of the
residual variance-covariance matrix (inversion, factor-unable to identify and, therefore, to make use of this

QTL in his early selection. ization, etc.), but may be deviate from reality. The exten-
sion of our analysis to nonstationary variance-covarianceOur method can be extended to incorporate a gen-

eral biological process of an organism into a QTL map- structures is possible, as proposed by Nunez-Anton
(1997) and Nunez-Anton and Zimmerman (2000) inping framework. Such a process can be allometric scal-

ings (West et al. 1997, 1999), growth models (Gould their structured antedependent models. Also, Kirkpat-
rick and co-workers proposed Legendre polynomials1977; Alberch et al. 1979), or continuous responses to

the environment in which an organism is reared (Via to model the dynamic changes of genetic or residual
variance and covariance with age (Kirkpatrick andet al. 1995). However, for clarity of description, we based

our analysis on growth curves only. For growth models, Heckman 1989; Kirkpatrick et al. 1990, 1994). These
parametric models for covariance function were im-we further limited our analysis to sigmoidal or logistic

curves. Logistic growth curves are now regarded as one proved by Pletcher and Geyer (1999) to assure the
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the above equations will be used to provide new estimators Letting y � b � e r t, we have
of � in the next step.

dy
dt
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and, thus,APPENDIX B

Below, we describe a mathematical procedure for calcu- dy
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lating the integral of a logistic curve,
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